Monday, November 11, 2019

Cough Syrup: Thinking like a scientist

Full details of the activity can be found in the CIEC publication 'Cough Syrup' which can be downloaded from

This publication contains lots of opportunities for children to think and work like a scientist and learn about the different stages in the production of a new medicine. It would be a wonderful way to teach the ‘Properties and changes of materials’ strand of the science curriculum for Year 5, and then extend the topic as well as the full range of enquiry skills with Year 6.  Teachers may choose to approach this lesson in two different ways.  Children can follow fairly prescriptive instructions which give teachers the opportunity to teach and assess skills such as measuring and graphing and the importance of repeat measurements.  Alternatively, teachers can teach and assess children’s skills to plan, carry out and evaluate a fair test by offering children the opportunity to devise and carry out their own investigation.

The Activity: Filtration
  • In the lesson prior to this, children investigate the most effective method of producing the active ingredient for a new cough syrup. They test different conditions for growing yeast.
  • In this activity, children are reminded that the active ingredient is a micro-organism which is living in a liquid (growth solution) and they are challenged to suggest ways of getting the active ingredient out of the liquid. 
  • After a class discussion about different methods, children think about how to test different materials as filters. They use a mixture of flour and water to represent the micro-organism and growth solution. 
  • Groups might work together to devise a fair test. If using this approach they may find the interactive planning tool a useful resource.  Alternatively, each group could be asked to test four different materials to find the most effective filter. In this case, they should place their first chosen material in a funnel or upturned bottle and hold it over a beaker to collect the water. They should stir and then pour 100ml of their flour and water suspension through the filter and time how long it takes to collect 50ml of the liquid that comes through. 
  • If following instructions, children should repeat this for each of the filters, mixing a new suspension each time. 
  • Throughout the investigation, children would then compare the times taken as well as the clarity of the filtrate. This may be done by straightforward observation or by placing the filtrate in front of a dark background, shining torch light through the liquid and placing them in order of clarity. Light sensors may also be used for increased accuracy and to produce quantifiable results that can be presented in a bar chart or, if comparing time and clarity, a scatter graph. 
  • If children have devised their own test, do not be afraid to let them spend time on activities that you know will not work. Also, allow plenty of time at the end of the lesson to discuss and evaluate the methods that they chose.  This allows for much deeper learning than if they are guided towards a more ‘successful’ test in the first instance.
  • The results of the filtration tests should be reported back to a real or fictitious medicine company and suggestions made about how the active ingredient can be extracted from the filtrate. 
Year 5 children carrying out the filtration activity.

Links to the National Curriculum
Y5 Properties and changes of materials:
  • use knowledge of solids, liquids and gases to decide how mixtures might be separated, including through filtering and sieving
  • demonstrate that dissolving, mixing and changes of state are reversible
Working scientifically:
  • planning different kinds of scientific enquiries to answer questions, including recognising and controlling variable where necessary.
  • taking measurements, using a range of scientific equipment, with increasing accuracy and precision
  • recording data and results of increasing complexity using scientific diagrams and tables
  • reporting and presenting findings from enquiries, including conclusions, in oral and written forms

Monday, October 14, 2019

CIEC Role Badges - Promoting Teamwork and Roles from the World of Work

Introducing Role Badges
This week we are featuring our very popular resource - Role Badges. These can be used in any science lesson, and as an advisory teacher for our Children Challenging Industry (CCI) programme, I’d like to share with you my own experience of using them in schools.
While carrying out a CCI science activity, children are given the opportunity to work in small ‘companies’. Each child chooses a role within the group, for example,  Health and Safety Manager or Resources Manager. The children wear a lanyard with a badge showing their role within their ‘company’.
There are five role badges - Health and Safety Manager, Communications Officer, Resources Manager, Administration Officer, and Personnel Manager

The Role Badges provide an excellent opportunity for the children to focus on working cooperatively as a team, whilst highlighting real jobs from the world of industry. The roles can be swapped each lesson so that the children can experience different tasks. Pupils enthusiastically enter into these roles and the badges add an extra buzz of excitement to the lesson!
Children at a school in the North East of England
So How Do The Badges Work In Practice?
Each badge carries a set of responsibilities which are outlined in the resource information. Once the badges are explained the children very eagerly assume their roles.
We strongly encourage teachers to carry out science in groups of four, and provide the fifth role badge purely for classes where the occasional group of five is required. Otherwise, the responsibilities of the Administration Officer are merged with those of the Communication Officer.
The Personnel Manager is responsible for eliminating any disputes within the group and ensuring the team works cooperatively.  Great for developing teamwork skills.
A particularly popular badge is that of Resources Manager. The pupil who is assigned this role is solely in charge of collecting and returning all the resources needed.   This promotes independent working as the children select their own resources.
The Communications Officer elicits the group’s ideas and responses and reports back to the rest of the class whilst the Administration Officer is responsible for keeping pictorial or written records during the activity, e.g. predictions, tables of results, lists of resources, diagrams, conclusions or evaluations for the group.
Lastly, we must not forget to mention the all-important Health and Safety Manager who is responsible for overseeing the safety of the group and assessing any risk involved in practical activities. The pupils are interested to hear that in every UK company today, the Health and Safety Officer is a vital role! Another great topic for discussion.
The badges reflect the CCI programme’s emphasis on careers in industry and prompt the children to begin considering work roles before they encounter ambassadors from industry, or if they are lucky, meet adults on visits to the workplace - as we are able to offer through CCI.
A CCI ambassador, Stephanie Udeogu from Johnson Matthey, talks to a group of children about her role in industry.
An Excellent Tool for Classroom Organisation and Confidence Building and Teamwork
The Role Badges aid classroom organisation by ensuring classroom areas don’t become overcrowded as only a few children need to move around to get the resources they need.  There are nominated people in each group to feedback and record, which ensures a smooth lesson.  
Children can sometimes initially lack confidence when assuming a role but often rise to the challenge and discover that they can do something new.   Prompting each other about their roles enables heightened interaction and promotes good teamwork. Children develop social skills when working in their roles in all sorts of unexpected ways, for example, learning to be less ‘bossy’ or more encouraging,  learning to support others in their roles if they need it, sharing and making decisions. They enjoy the feeling of being given an adult role and feel empowered by it. The badges foster independent work and develop organisational skills.
As one expert testifies: "I have been using the CCI role badges for many years and they are a brilliant way to organise practical science lessons. The children often remind each other of when it is their turn to respond or collect equipment or record some important information. The personnel manager is a fantastic way to ensure teamwork such as turn-taking, sharing and working together." Nicola Waller, CCI Advisory Teacher.

Full details of the role badges are available in the CIEC Primary Resources section which can be downloaded from

Monday, June 10, 2019

CIEC resources in action

Jenny Martin shares her expertise with children from Challoner Primary School
This month we feature a guest post from Chartered Chemical Engineer Jenny Martin.

As a chartered chemical engineer who moved into “semi retirement” (otherwise known as “maternity leave”) many years ago, I have made it my mission to spread the wonders of science to all young minds who cross my path.  I have been working as a childminder and volunteering at several local schools so the young minds available to me have been many!

Several years ago, I discovered “Children Challenging Industry” while it was being presented to the Year 6 pupils at my local primary school.  I delved into the bank of resources available on their website and have continued to do so at regular intervals ever since.

I have used the “Tidy and Sort” resources with groups of Reception/Year 1/2 children.  The resources were clear and simple to follow; the story book being a great visual guide to set the scene and start the children thinking.

The front cover of the Tidy and Sort resource that Jenny has used with EYFS and  KS1 chidlren to 'get them thinking'.

While teaching States of Matter to a group of Year3/4 children, I used the “Whip or Squirt?” test from the Kitchen Concoctions resource pack.  This was an excellent experiment comparing dairy cream and artificial cream.  It encouraged some great discussions and ideas for recording their results.

Learning about states of matter using the whipped cream activity from the CIEC resource Kitchen Concoctions.
 I am currently working with a group of four Year 5 “Science Ambassadors” to help them deliver science activities across the whole school.  So far they have led States of Matter themed experiments with Years 3, 4 and 5 classes and all involved seem to be enjoying themselves.

A Year 5 science ambassador shares his enthusiasm for science with some younger children.

It is so rewarding when the children rush up to me in the playground to ask when I am coming back into school to do more science.  Historically, science has been perceived as the “boring” or “hard” subject, it is great to see the tide turning and it now being promoted to the fun topic it so rightly deserves!
Mission accomplished!!

Wednesday, January 23, 2019

Science of Healthy Skin: Investigating what happens when oil is added to water

Full details of the activity can be found in the CIEC resource 'Science of Healthy Skin’ which can be downloaded from:
Based upon the extraction of lanolin from wool grease, the activities in this resource include testing immiscible liquids using oil and water and investigating the effects of adding detergent to produce emulsions which in turn reduce the efficiency of the separation of oil from water.

The Activity: Fleece to Grease


  • 300 ml water
  • 300 ml sunflower oil
  • 50 ml clear water - sample A
  • 50ml clear glycerine - sample B
  • 50 ml clear detergent - sample C
  • 50 ml white vinegar - sample D
  • 4 clear plastic mini pop bottles or lidded containers around 30ml per group of 4 children
  • Pipette x 1 for each child
  • Teaspoon or similar for stirring
  • 100 ml measuring cylinder 


  • To describe changes that occur when materials are mixed
  • To make systematic observations and measurements
  • To know that that some liquids do not mix, can be separated easily and are termed ‘immiscible’
  • To observe that detergent can cause immiscible liquids to mix, producing an emulsion

What happens when oil is added to water?

Each child in the team of 4 to pour 10ml of water and 10ml of oil into one of the containers.
Ask them to wait for 1 minute to see what happens to the oil and water.
Tip the containers upside down four times and ask the children .....
  • Did the oil and water mix?
  • Did shaking make the liquids mix?
  • Why do you think this happened?

The oil and mixture quickly separate when they are on their own.  But will adding any of the other ingredients make a difference?

Investigate whether adding sample A, B, C or D affects the separation of water and oil.

Using the pipette, add 10 drops of sample A to one of the bottles, 10 drops of sample, B to another bottle and 10 drops of samples C and D to the other two bottles.
Ask children to observe how long it takes for the oil and water to separate after 4 shakes.
Ask them to consider how they will record their observations.

Health and Safety
Remind the children not to drink their samples.

  • planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary
  • Taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate
  • Use observations, measurements or other data to draw conclusions

Subject Knowledge

Learning Objectives
  • Know that changes occur when materials are mixed and some of these are reversible

Wednesday, January 9, 2019

Thinking, Doing, Talking Science

CIEC has recently been involved in the latest trial of a flagship professional development programme in science teaching – Thinking, Doing, Talking Science (TDTS).  TDTS aims to support teachers to make science lessons in primary schools more practical, creative and challenging - with a focus on the development of higher order thinking skills. It does this by giving them lots of ideas for engaging practical lessons combined with strategies which provoke reasoning and creative thinking.

One of these strategies is called PMI (plus, minus, interesting).  Teachers suggest a scenario to children and then invite them to work in small groups to think of all of the positives that they can about the scenario.  They are then asked to think about all of the possible draw backs, or negatives, of the same scenario.  Finally, they are asked to think of any interesting questions or thoughts that the discussion have given rise to.

One possible PMI question is What if we lived in a world without gravity?  
(picture sourced from pixabay)           

Well, for one thing, there’d no longer be a market for helium filled balloons! PMI is such a successful strategy because there are no right or wrong answers and this gives children the confidence to contribute their thoughts and ideas.  However, the children will use, and reveal, a lot of their scientific understanding as they take part in the discussion.  As well as giving teachers a valuable assessment opportunity the discussion can help to move children’s thinking forward as they explore their ideas together.

TDTS has been developed by Science Oxford and Oxford Brooks University and initial trials have shown that it has the potential to increase children’s engagement with and attainment in science, especially for vulnerable groups of pupils.  The impact has not been so marked with the roll out stage of the trial.  Nevertheless, results are promising enough that the EEF are continuing to fund trials of this low-cost intervention as “the available evidence indicates that the programme can be implemented at scale through a train-the-trainers model, that it is valued by teachers exposed to the programme, and it changes their teaching practices in a manner consistent with the hypothesis.”  CIECs Nicky Waller will be continuing to work with the core team during this next stage of the pilot.

Teachers on one of the TDTS training days in Lincolnshire

Feedback from teachers has been very positive.  After attending the training with CIEC one of the teachers from a Lincolnshire school wrote

My head teacher thoroughly loves the new way of teaching science that I am doing since coming on the course, she loves the way the children have such high level thinking, the questions they asked and the previous lessons that they were drawing up on. So thank you for giving me knowledge and inspiring me to teach science in a completely different way!"

For more information on the TDTS project, go to