Showing posts with label Sustainability. Show all posts
Showing posts with label Sustainability. Show all posts

Monday, October 3, 2022

New sustainability science activities from CIEC


This blog post it brought to you by Jane Winter, one of CIEC's advisory teachers

CIEC has started the new academic year by adding some more activities to the existing sustainability resource.  Like most CIEC publications these engaging and easily resourced investigations link real life science solutions to environmental problems and the primary science curriculum. 

Sponsored by Innospec, a company that develops personal care products, the investigations support children to consider the environmental impact of products such as soap and shampoo.  In one activity children explore the efficacy of solid and liquid formulation of soap and research the different transport and packaging requirements of these everyday products.  In another they plan an investigation to assess the suitability of different packaging materials, including an innovative soap wrapping that Innospec scientists have developed which dissolves the first time that the soap is used, thus reducing waste.

Children are motivated to work on these challenges to find out how science can provide solutions to environmental problems

As well as linking to the materials strand of the KS2 curriculum the activities provide ample opportunities for working scientifically including observation over time, secondary research and planning a fair test.  There are also cross curricular links including producing written reports for the scientists at Innospec and creating tables and graphs to display measurements taken during the investigations.  

The PowerPoint, which is included in the resource, provides open ended starting points for classroom discussion, letters from the scientists at Innospec and a short video highlighting the long term environmental impact of single use plastics including packaging. 

The resource contains a short video which provides a context for the investigations

These activities, and many more, are free to download from the CIEC website.  If you use this resource in your classroom we would love to hear from you to hear how it went.  Get in touch (preferably with photographs) at CIEC@york.ac.uk and we will send you a hard copy of some of our resources to say thank you.

Monday, June 22, 2020

Sustainable Stories: Which Plastic?

This blog post is brought to you by Jane Winter, one of our advisory teachers who works in Lincolnshire and Yorkshire.


Although the materials for this investigation are free and readily available, they can be a little tricky to source.  However, it is well worth taking the trouble to do this as, once you have, everything else is very straightforward.  When I have done this activity I have found that there is a real buzz in the classroom.  Moreover, you could easily provide enough equipment for a whole classroom full of socially distanced youngsters to do the activity at the same time.


The tricky bit

You will need samples of some different types of plastic. 
Sample 1: The thin clear plastic that often comes around packs of Christmas cards and in some other packaging
 Sample 2: Foam plastic (expanded polystyrene, PS) used as for takeway foods such as burgers and chips
Sample 3: Polystyrene, as used for the lids of takeaway coffee cups. The name of this plastic surprises the children, as ‘expanded’ polystyrene is commonly referred to as polystyrene, but for scientists, there are two types, and this one is un-expanded!
Sample 4: The plastic used for milk bottles (polythene, HDPE)

Each child will need a strip of each plastic cut to approximately 8 x 1 cm.  They will also need a bowl, jug or tub of water large enough to put their hand into and some table salt.

Top Tip 
This is one activity that you really must try out for yourself before letting your class lose with it.  Manufacturers sometimes change the formulation of their plastics and so they don’t always behave as you expect them to!

The fun bit
Children test each sample to see if it floats in water or in salt solution (brine) and how it reacts to being folded.  The results of their tests will let them identify what each sample of plastic is made of.  For example, PVC and polystyrene will both sink in plain water; but if salt is added the polystyrene will begin to float.
This is an important thing to be able to do as different plastics are recycled in different ways so we need to be able to identify them.  At this stage I have found that providing children with a simple table helps them to organise their data as they carry out the tests.  


Full instructions, including safety notes, for how to do the activity are provided in this free to download resource.


This activity builds on the work that children have done on materials in KS1. It helps them to develop their skills of working scientifically by sorting in a more sophisticated way.  There is a simple sorting key on activity sheet 5 of the resource which will support children develop their understanding of how keys work, as they use it to classify their plastic samples.

As children start to think about the reasons that we might need to be able to classify materials more precisely they can begin to consider why and how this science might be used in industry.  A class discussion will help them to understand that being able to use post-consumer waste makes processes more economically viable as well as more environmentally friendly.  These sorts of links help to raise children’s science capital as they see how the science that they do in school has real life applications and is relevant to their lives both now and in the future.

To coincide with InternationalWomen in Engineering day we have published a new IndusTRY AT HOME activity for you share with families.  Why don’t you put a link on your school website?

For a broader set of activities linked to this topic, please go to http://www.ciec.org.uk/resources/plastics-playtime.html which expands the topic to look at the heat insulation and shock absorption properties of plastics – and children design and test packaging to protect parcels of fragile crisps, which they post back to themselves in school – the ultimate test of their designs!

Monday, May 18, 2020

Sustainable Stories: Which washing powder?


This month’s blog is brought to you by Clare Docking, one of our advisory teachers who works with industry and schools in the East of England.

I love sharing this activity with our partner schools. children really enjoy getting stuck into cleaning the stains off fabrics using different washing products whilst at the same time improving their investigation skills.  The activity lends itself to being run with a small number of children in a mixed aged classroom – something that is a reality for many teachers at the moment.  Children can also work outdoors if the weather is fine.

Getting Ready

As the free resource explains, the only kit you will need is readily available household equipment.  Asking children to bring small samples of different washing powder, liquid or gels from home will give you a selection to compare without any unnecessary shopping trips.  You could also include the children in the preparation by working with them to produce the stained fabric ready to test.




Full details of the activity can be found in our free publication and incudes teachers’ notes, children’s activity sheets and national curriculum links.


Planning the investigation

I have found that the interactive planning tool  is a great way for children to organise their thoughts as they plan how they are going to carry out their investigation.  If children haven’t used one before, work with them to show them how they can use it to record all of the possible variables and to decide what they are going to measure and what they are going to keep the same.  They may find this easier to do if they have the opportunity to ‘have a play’ with the materials first and therefore begin to formulate their ideas about which product they think might be the most effective.  They can then decide how they can prove that their hypothesis is right!  With this in mind, make sure that you have plenty of spare stained cloths and washing product so that you still have enough left when you begin the main investigation.



Instead of using the interactive planning tool you may choose to use the post-it planning template which is provided with the resource.  This will be particularly useful if you are working outdoors.

Sharing results

In my experience children can be just as engaged when it comes to sharing their results as they are when carrying out the main activity.  Two approaches that I have seen used effectively are asking children to write to the manufacturer to advise them of their findings and writing an advertisement extolling the virtues of the most effective product.  I find that children love using phrases such as ‘Scientists found that XXX was more effective at xxx than the brand leader’ knowing that they are the scientists that carried out the test!




Perhaps children could shoot a TV commercial to explain to consumers why they think that they should buy a particular product?


I usually round off the session with our PowerPoint presentation showing the children how the scientists at one company have been able to produce a more environmentally friendly washing product. It protects fabrics from damage and prevents colours from fading during washing.  This will help children to understand that science can help us to tackle environmental problems and that science could be a worthwhile career choice for themselves in the future.


Visit  our IndusTRY AT HOME page to find a version of this activity that can be shared directly with families





Tuesday, February 4, 2020

Sustainable materials: which metal?

Full details of the activity can be found in the new CIEC publication 'Sustainable Stories and Solutions for our Planet' which can be downloaded from  http://www.ciec.org.uk/resources/sustainability.html

Sustainable materials – which metal?

In this activity you will investigate how some metals rust when exposed to oxygen in the air and water. You will learn about some metals that do not change, corrode or rust easily and so have special uses, particularly in reducing gas emissions on highly polluted roads.

It would be a wonderful way to teach the ‘Properties and changes of materials’ strand of the science curriculum for Year 5, with a particular focus on how some changes result in the formation of new materials that is not usually reversible.


The Activity: 
·         Carry out a ‘rust hunt’ to observe how some metals change colour and become weaker (corrode) when they react to substances in the environment.
 ·         Investigate which metals rust by placing everyday metal objects in saucers of shallow water. Over several days, observe which objects start to show signs of rust and which do not. Steel wool pads can be used to test for signs of rusting.
·         Begin to form conclusions about which metals rust and what causes this to happen. You could use a magnet to identify metal items that contain iron or steel.

·         Think of your own ‘rusting’ enquiry questions, such as: can iron or steel rust when there is no water? Does salt speed up rusting? Can I prevent rusting? Plan and carry out your investigation; you can ask for extra ‘kit’ if you need it.

Results from rusting activity using a steel wool pad left for two days in different liquids.


·         Research how some metals, such as gold, silver, platinum and palladium, are unique because they do not react easily, change or corrode. These ‘precious metals’ are often used to make jewellery as well as catalysts which are fitted to car exhaust systems to turn harmful gases produced in the engine into safe gases. 



Links to the National Curriculum
Y5 Properties and changes of materials:

  • explain that some changes result in the formation of new materials, and that this kind of change is not usually reversible, including changes associated with burning and the action of acid on bicarbonate of soda.



Working scientifically:
  • planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary
  • recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs 
  • reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations